The enzymatic function of tafazzin.
نویسندگان
چکیده
Tafazzin is a putative enzyme that is involved in cardiolipin metabolism, it may carry mutations responsible for Barth syndrome. To identify the biochemical reaction catalyzed by tafazzin, we expressed the full-length isoform of Drosophila melanogaster tafazzin in a baculovirus-Sf9 insect cell system. Tafazzin expression induced a new enzymatic function in Sf9 cell mitochondria, namely 1-palmitoyl-2-[14C]linoleoyl-phosphatidylcholine:monolysocardiolipin linoleoyltransferase. We also found evidence for the reverse reaction, because tafazzin expression caused transfer of acyl groups from phospholipids to 1-[14C]palmitoyl-2-lyso-phosphatidylcholine. An affinity-purified tafazzin construct, tagged with the maltose-binding protein, catalyzed both forward and reverse transacylations between cardiolipin and phosphatidylcholine, but was unable to utilize CoA or acyl-CoA as substrates. Whereas tafazzin supported transacylations between various phospholipid-lysophospholipid pairs, it showed the highest rate for the phosphatidylcholine-cardiolipin transacylation. Transacylation activities were about 10-fold higher for linoleoyl groups than for oleoyl groups, and they were negligible for arachidonoyl groups. The data show that Drosophila tafazzin is a CoA-independent, acyl-specific phospholipid transacylase with substrate preference for cardiolipin and phosphatidylcholine.
منابع مشابه
Characterization of tafazzin splice variants from humans and fruit flies.
The tafazzin gene encodes a phospholipid-lysophospholipid transacylase involved in cardiolipin metabolism, but it is not known why it forms multiple transcripts as a result of alternative splicing. Here we studied the intracellular localization, enzymatic activity, and metabolic function of four isoforms of human tafazzin and three isoforms of Drosophila tafazzin upon expression in different ma...
متن کاملA zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function.
Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, neutropenia, organic aciduria, and growth retardation caused by mutations in tafazzin. The sequence similarity of tafazzin to acyltransferases suggests a role in mitochondrial phospholipid metabolism. To study the role of tafazzin in heart function and development, we created a knockdown zebrafish model. ...
متن کاملMitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes
Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byprod...
متن کاملStructural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain
Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS). Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. F...
متن کاملBarth syndrome mutations that cause tafazzin complex lability
Deficits in mitochondrial function result in many human diseases. The X-linked disease Barth syndrome (BTHS) is caused by mutations in the tafazzin gene TAZ1. Its product, Taz1p, participates in the metabolism of cardiolipin, the signature phospholipid of mitochondria. In this paper, a yeast BTHS mutant tafazzin panel is established, and 18 of the 21 tested BTHS missense mutations cannot functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 51 شماره
صفحات -
تاریخ انتشار 2006